
Intro to Searching

Algorithm

■ What is an algorithm, again?

2

Algorithm

■ What is an algorithm, again?
❑ Describes the process of how we solve a problem
❑ Is code-neutral

3

Searching Algorithms

■ Many objects already provide searching
methods for us
❑ Good example of encapsulation
❑ myList.index(4)

■ But how do those functions work?
■ Let’s write some code in basic python to

search a list without methods

4

def basicSearch(lyst,what):
 for item in lyst:
 if item == what:
 return True
 return False

5

def linearSearch(lyst,what):
 for index in range(len(lyst)):
 if lyst[index] == what:
 return index
 return -1

6

Big “O” Notation

■ Can we improve our search?
■ Big “O” notation is analysis on how long our

algorithm takes as our data set grows
❑ Typically asking for two values:

■ On average
■ Worst case scenario

7

Big “O” Notation

■ Based on the functions we developed
❑ Worst case scenario, how many things do we

need to look at to find our number in the list?
❑ On average, how many things do we need to look

at to find our number in the list?

■ What if our list were of size 20?

8

Big “O” Notation

■ Based on the functions we developed
❑ Worst case scenario, how many things do we

need to look at to find our number in the list?
■ 20

❑ On average, how many things do we need to look
at to find our number in the list?
■ 10

9

Big “O” Notation

■ Based on the functions we developed
❑ Worst case scenario, how many things do we

need to look at to find our number in the list?
■ N, where N is the number of items in the list

❑ On average, how many things do we need to look
at to find our number in the list?
■ N/2

10

Linear Search
■ Our previous algorithms make one

comparison for every item as worst case.
■ Also called a linear search, because the

number of comparisons scales as the amount
of items in the list increases

■ Double the number of items in list, double the
amount of time needed to complete the
search in the worst case

■ Can we do better than a linear search
❑ Less comparisons, even on worst case?

11

Optimized Searching

■ Have you ever played the higher or lower
game?
❑ Think of a number
❑ As the player guesses the number, you say

“higher” or “lower” until the player finally guesses
the correct number

12

Optimized Searching

■ One good strategy if you are the guesser is to
❑ Guess the middle number of the range
❑ If the person says “higher”, then adjust your low

range bound to be your guess+1
❑ If the person says “lower”, then adjust your high

range bound to be your guess-1
❑ Repeat

13

Optimized Searching

■ Same idea if you are looking up a vocabulary
term in a dictionary

■ You will open the book, look at the current
word, and figure out if you should search
lower or higher

■ We might as well use this kind of additional
information to optimize our searching

14

Binary Search

■ We can use this type of search on our list
■ Does our list have to be sorted for this to

work?
■ Say that we have a list of 20 items
❑ What is the worst case number of comparisons?
❑ What about a list of 40 items?

15

Binary Search

■ Every time I double the number of items in
my list, my search complexity only goes up
by 1
❑ Is much better than linear time as number of items

in the list goes up

■ Let’s write a binary search.

16

Binary Search

■ Binary search algorithm
❑ Try the guess at middle index of the range
❑ If the value we are searching for is higher than

number at the index, then adjust your low range
bound to be your guess+1

❑ If the value we are searching for is lower than
number at the index, then adjust your high range
bound to be your guess-1

❑ Repeat

17

def binarySearch(lyst,what):
 lowIndex = 0
 highIndex = len(lyst) - 1

 while lowIndex <= highIndex :
 middle = (lowIndex + highIndex) // 2

 if lyst[middle] == what:
 return middle
 if lyst[middle] > what:
 highIndex = middle - 1
 if lyst[middle] < what:
 lowIndex = middle + 1

 return -1

18

Binary Search

■ What is the worst-case scenario of the binary
search?

■ Thinking of a number between 1 and 100
❑ 7 guesses in total – why?

■ 1 guesses – cut down to 50 possibilities
■ 2 guesses – cut down to 25
■ 3 guesses – cut down to 12
■ 4 guesses – cut down to 6
■ 5 guesses – cut down to 3
■ 6 guesses – cut down to 1
■ 7 guesses – to figure out if last guess is right

19

Binary Search

■ What is the complexity of a binary search?
❑ Big O value of log2 N
❑ This is “log base 2”

■ log2(100) = x
❑ What is this saying?

20

Binary Search

■ What is the complexity of a binary search?
❑ Big O value of log2 N
❑ This is “log base 2”

■ log2(100) = x
❑ What is this saying?
❑ 2x = 100
❑ Go “to the next power” when not exact

21

Binary Search

■ How does that relate to our binary search?
❑ Let’s say there are 16 items in our list. What is

the worst case number of guesses?

22

Binary Search

■ How does that relate to our binary search?
❑ Let’s say there are 16 items in our list. What is

the worst case number of guesses?
❑ It takes at most 20 guesses to find an item in a

1,000,000 item list:
❑ 2^10 = 1024 (10 guesses to find an item in 1000

items)
❑ One million is 1000 squared, so twice as much

23

