
Sets

Sets, as in Mathematical Sets

■ In mathematics, a set is a collection of
objects, potentially of many different types.

■ In a set, no two elements are identical. That
is, a set consists of elements each of which is
unique compared to the other elements.

■ There is no order to the elements of a set
■ A set with no elements is the empty set

Creating a Set

mySet = set(“abcd”)
■ The “set” keyword creates a set.
■ The single argument that follows must be
iterable, that is, something that can be walked
through one item at a time with a for.

■ The result is a set data structure:
print(mySet)
{'a', 'c', 'b', 'd'}

Diverse Elements

■ A set can consist of a mixture of different
types of elements:

mySet = {‘a’,1,3.14159,True}
■ As long as the single argument can be

iterated through, you can make a set of it.

No Duplicates

■ Duplicates are automatically removed.

mySet = set(“aabbccdd”)
print(mySet)
{'a', 'c', 'b', 'd‘}

Common Operators

Most data structures respond to these:
■ len(mySet)
❑ the number of elements in a set

■ element in mySet
❑ boolean indicating whether element is in the set

■ for element in mySet:
❑ iterate through the elements in mySet

Set Operators

■ The set data structure provides some special
operators that correspond to the operators
you learned in middle school.

■ These are various combinations of set
contents.

Set Ops, Union
mySet=set(“abcd”); newSet=set(“cdef”)

mySet.union(newSet)
mySet | newSet
returns {‘a’,’b’,‘c’,’d’,’e’,’f’}

 a b c d e f

Set Ops, Intersection
mySet=set(“abcd”); newSet=set(“cdef”)

mySet.intersection(newSet)
mySet & newSet
returns {‘c’,’d’}

 e f
a b c

d

Set Ops, Difference
mySet=set(“abcd”); newSet=set(“cdef”)

mySet.difference(newSet)
mySet – newSet
returns {‘a’,’b’}

 e fa b c
d

Set Ops, symmetricDifference
mySet=set(“abcd”); newSet=set(“cdef”)

mySet.symmetric_difference(newSet)
mySet ^ newSet
returns {‘a’,’b’,’e’,’f’}

 e fa b c
d

Set Ops, super and sub set
mySet=set(“abc”); newSet=set(“abcdef”)

mySet.issubset(newSet)
mySet <= newSet
returns True

a b c d e f

Set Ops, super and sub set
mySet=set(“abc”); newSet=set(“abcdef”)

newSet.issuperset(mySet)
newSet>= mySet
returns True

a b c d e f

Other Set Ops

■ mySet.add(“g”)
❑ Adds to the set, no effect if item is in set already.

■ mSet.clear()
❑ Empties the set.

■ mySet.remove(“g”) versus
mySet.discard(“g”)
❑ remove throws an error if “g” isn’t there. discard

doesn’t care. Both remove “g” from the set.
■ mySet.copy()

❑ Returns a shallow copy of mySet.

Copy vs. Assignment

mySet=set(“abc”)
myCopy=mySet.copy()
myRefCopy=mySet
mySet.remove(‘b’)
print myCopy
print myRefCopy mySet

myCopy

myRefCopy

{‘a’,‘c’}

{‘a’,‘b’,‘c’}

A few examples…

