
Functional
Decomposition

Programs are getting larger…

■ Our programs are starting to get large
enough that we can’t hold all the details of
the implementation in our heads

■ We need a toolset to help us break down
large programming problems into smaller,
more manageable sub-problems

2

Breaking up our programs

■ When should break up our programs into
small problems?
❑ …before we try to write them!

■ Why?
❑ We can create re-usable, debuggable pieces

that save us time
■ This means that we should integrate this

notion into our early design process

3

Functional Decompostion

■ Functional decomposition* works to break
up a large programming assignment into
smaller sub-problems
❑ Working from the abstract to the concrete

■ This is also known as top-down design

4

* Special thanks to Dr. McCormick for the use of his materials from the book: Dale,
Weems, and McCormick. Programming and Problem Solving with ADA 95.

Design

■ Abstract step – a list of major steps in our
solution

■ Concrete step – algorithmic steps that can
be translated directly into Python code
❑ …or, the code of any programming language!

5

Design

■ We need to break down a solution from a
series of very high-level abstract steps into
concrete algorithmic steps that can be
implemented in code

■ Each of the major steps becomes an
independent sub-problem that we can work
on independently

6

Design

■ Why would we want to do this?
❑ It’s much easier to focus on one problem at a

time.
❑ Can get lost in large specifications without a plan

7

Design

■ We can create a hierarchical solution tree
that goes from the most abstract steps to the
concrete steps

■ Each level of the tree is a complete solution
to the problem that is less abstract than the
level above it
❑ This is known as functional equivalence

8

Hierarchical Solution Tree
■ Concrete steps are shaded

9

Modules

■ Each box represents a module
■ Modules are a self-contained collection of

steps that solves a problem or subproblem
❑ They can contain both concrete and abstract

steps
❑ Concrete steps are often written in pseudocode

10

Design Warm Up – mileage.py

■ Dr. Mobile asks you to write a program that
asks for the starting and ending mileage as
well as the total gasoline consumed.

■ It then calculates the MPG and prints a nice
message regarding the MPG of the car.
❑ Recall, mpg = (ending mileage – start mileage) /

gas consumed
■ It must also print out if the car can be legally

driven as-is in California by 2016 (>= 35
MPG)

11

Mileage Solution Tree

■ Level 0 Solve the Problem

■ No steps are shaded, so these are all
abstract steps (must be broken down more to
solve in code

12

1. Get Data
2. Calculate MPG
3. Print Data

Mileage Solution Tree

■ Level 1 Get Data

■ All steps are shaded, so these are all
concrete steps that we can translate directly
into Python code

13

1. Ask for starting mileage
2. Ask for ending mileage
3. Ask for gas consumed

Get Data

startMileage = int(input(“Please enter the starting mileage: “))
endMileage = int(input(“Please enter the ending mileage: “))
gasConsumed = int(input(“Please enter the gas consumed: “))

14

Mileage Solution Tree

■ Level 1 Calculate MPG

■ This is a concrete step that we can translate
directly into Python code

15

1. Mpg = (end-start)/gas
consumed

Calculate MPG

mpg = (endMileage – startMileage) / gasConsumed

16

Mileage Solution Tree

■ Level 1 Print Data

■ We still need to break down step 2 into
something more concrete

17

1. Print mpg
2. Print if car can be driven in

California

Mileage Solution Tree

■ Level 2 Drive in California

■ These are concrete

18

1. if mpg < 35:
print cannot drive

else
print can drive

Print Data

Print mpg
print(“The total mpg is: “, mpg)

#Drive in California
If mpg < 35:

print(“Cannot drive in California.”)
else

print(“Can drive in California!”)

19

Total Table

20

1. Get Data
2. Calculate MPG
3. Print Data

1. Mpg =
(end-start)/gas
consumed

 1. Print mpg
2. Print if car can be

driven in California

1. Ask for starting mileage
2. Ask for ending mileage
3. Ask for gas consumed

1. if mpg < 35:
print cannot drive

else
print can drive

Level 0

Level 1

Level 2

Solve the Problem

Get Data Calculate MPG Print Data

Drive in California

Next step

■ Each module in our solution tree could be
broken into a function

■ How do we decide?
❑ For now, let’s not divide up the input and print

portions into their own functions
■ Relatively easy to leave them as they are

❑ That leaves the calculation and California
portions…

21

