Functional
Decomposition

Programs are getting larget...

Our programs are starting to get large
enough that we can’t hold all the details of
the implementation in our heads

We need a toolset to help us break down
large programming problems into smaller,
more manageable sub-problems

Breaking up our programs

When should break up our programs into
small problems?

o ...before we try to write them!
Why?

2 We can create re-usable, debuggable pieces
that save us time

This means that we should integrate this
notion into our early design process

Functional Decompostion

Functional decomposition* works to break
up a large programming assignment into
smaller sub-problems

2 Working from the abstract to the concrete

This is also known as top-down design

* Special thanks to Dr. McCormick for the use of his materials from the book: Dale,
Weems, and McCormick. Programming and Problem Solving with ADA 95.

Design

Abstract step — a list of major steps in our
solution

Concrete step — algorithmic steps that can
be translated directly into Python code

a ...or, the code of any programming language!

Design

We need to break down a solution from a
series of very high-level abstract steps into
concrete algorithmic steps that can be
Implemented in code

Each of the major steps becomes an
iIndependent sub-problem that we can work
on independently

Design

Why would we want to do this?

o It's much easier to focus on one problem at a
time.

o Can get lost in large specifications without a plan

Design

We can create a hierarchical solution tree

that goes from the most abstract steps to the
concrete steps

Each level of the tree is a complete solution
to the problem that is less abstract than the
level above it

a Thisis known as functional equivalence

Hierarchical Solution Tree
=« Concrete steps are shaded

Top Abatract
Sohe thelpmblem Level O

Seep |
Step il
Step 1l

Subproblem A Subprobiem B Subprablem C S I:-rl.'ul'.lr:m i
1
Step 4
Step 1 Step 5 Pyt
Step &
Level 3
Subproblem 2

Step @

Step b

Step e

¥ T
Eottom Concrete

Fioure 4=31 Hirrarchiral Safutian Tree

Modules

Each box represents a module
Modules are a self-contained collection of
steps that solves a problem or subproblem

a2 They can contain both concrete and abstract
steps

o Concrete steps are often written in pseudocode

10

Design Warm Up — mileage.py

Dr. Mobile asks you to write a program that

asks for the starting and ending mileage as

well as the total gasoline consumed.

It then calculates the MPG and prints a nice

message regarding the MPG of the car.

a2 Recall, mpg = (ending mileage — start mileage) /
gas consumed

It must also print out if the car can be legally

driven as-is in California by 2016 (>= 35

MPG)

11

Mileage Solution Tree

Level O Solve the Problem

q. Get Data
2. Calculate MPG
3. Print Data

o

\

J

No steps are shaded, so these are all

abstract steps (must be broken down more to

solve Iin code

12

Mileage Solution Tree

Level 1 Get Data

Ask for ending mileage

q. Ask for starting mileage
2
3. Ask for gas consumed

- J

All steps are shaded, so these are all
concrete steps that we can translate directly

iInto Python code

13

Get Data

startMileage = int(input(“Please enter the starting mileage: “))
endMileage = int(input(“Please enter the ending mileage: “))
gasConsumed = int(input(“Please enter the gas consumed: “))

14

Mileage Solution Tree

Level 1 Calculate MPG

q. Mpg = (end-start)/gas
consumed

_

J

This is a concrete step that we can translate

directly into Python code

15

‘ Calculate MPG

mpg = (endMileage — startMileage) / gasConsumed

16

Mileage Solution Tree

Level 1 Print Data
q. Print mpg A
2. Printif car can be driven in
California
_ J

We still need to break down step 2 into

something more concrete

17

Mileage Solution Tree

Level 2

Drive in California

_

A

if mpg < 35:

print cannot drive
else

print can drive

\

These are concrete

18

Print Data

Print mpg
print(“The total mpg is: “, mpQ)

#Drive in California
If mpg < 35:

print("Cannot drive in California.”)
else

print("*Can drive in Californial”)

19

Total Table

Level O Solve the Problem
4)
1. Get Data
2. Calculate MPG
3. Print Data
M/)
(Leve' " Ge § (_Qmﬂmm
1. Ask for starting mileage 1. Mpg= (1 Print mpg
2. Ask for ending mileage (end-start)/gas 2. Printif car can be
3. Ask for gas consumed consumed driven in California
_ J J N
Level 2 Drive in Q@rnia

1. ifmpg < 35: A
print cannot drive
else
print can drive
/

20

Next step

Each module in our solution tree could be
broken into a function

How do we decide?

o For now, let’s not divide up the input and print
portions into their own functions
Relatively easy to leave them as they are

o That leaves the calculation and California
portions...

21

