
Namespaces 
and Scope



Namespaces

■ You can think of a namespace as where a 
name is valid and can be used
❑ If one function has a variable, another function 

(usually) cannot gain access to its value
❑ Two functions can use variables with the same 

name.  These are two separate variables.
❑ Variables declared within functions go away after 

the function ends



Variable name resolution
■ Namespace similar to a dictionary
■ Multiple namespaces exist
■ If a variable is not found in the local namespace, 

Python applies a name resolution algorithm, checking 
a sequence of namespaces: 
❑ Local
❑ Enclosed
❑ Global
❑ Built-in



Local scope
■ The set of program statements over which a variable 

exists, that it, can be referred to
■ Local scope: a variable can be referenced only within 

the suite of the function where it was assigned



Global variables

■ A global variable is declared outside of any 
function and can be seen by any function…
❑ …but cannot be changed by any function unless 

you use the “global” keyword
■ Why don’t we want to use global variables 

very much?

5



How Python stores information

■ Objects are Python’s abstraction for data. 
■ All data in a Python program is represented 

by objects or by relations between objects. 
■ Every object has:

❑ an identity (Where it is in memory.  Unchangeable)
❑ a type (How to interpret memory.  Unchangeable)
❑ a value (What is in memory.  May (not) be 

changeable)



Parameter passing

■ Let’s take a look at what happens when we 
try to pass mutable or immutable variables 
into functions…

7



Reminder: Assignment

■ Assignment takes an object (the final object 
after all operations) from the right-hand-side 
and associates it with a variable on the 
left-hand side.

■ When you assign one variable to another, 
you share the association with the same 
object.





Immutables

■ Object sharing, two variables associated with 
the same object, is not a problem since the 
object cannot be changed.

■ Any changes that occur generate a new 
object.





Mutability Changes an Object

■ If two variables associate with the same 
object, they both reflect any change to that 
object.







Copying

If we copy, does that solve the problem?

myLst = [1, 2, 3]
newLst = myLst[:]





The Problem is What Gets Copied…

■ The elements of the list are copied, but 
sometimes the elements of the list 
themselves are references (or associations). 

■ If the list has nested lists or uses other 
associations, the association gets copied. 
This is termed a shallow copy.









Concluding notes…

■ Managing complexity

■ Principle of information hiding (encapsulation)

■ All variables must be local (in 99.99% of 
cases)


