Namespaces

and Scope




Namespaces

You can think of a namespace as where a
name is valid and can be used

o If one function has a variable, another function
(usually) cannot gain access to its value

o Two functions can use variables with the same
name. These are two separate variables.

2 Variables declared within functions go away after
the function ends



Variable name resolution

Namespace similar to a dictionary
Multiple namespaces exist

If a variable is not found in the local namespace,
Python applies a name resolution algorithm, checking
a sequence of namespaces:

Local

Enclosed

Global

Built-in

Q
Q
Q
Q



Local scope

The set of program statements over which a variable
exists, that it, can be referred to

Local scope: a variable can be referenced only within
the suite of the function where it was assigned

>>> def scope test(foo):

bar = foo #local wvariable created
print ['the value of bar in this functiom is ', bar)

>»> scope test (42)
the value of bar in thi=s function i= 42
>»>> print{"the value of bar i=s ', bar)

Traceback (most recent call 1last):
File "<pyshell#5>™, line 1, in <module>
print{"'the value of bar is ', bar)

HameError: name 'bar' is not defined
g



Global variables

A global variable is declared outside of any
function and can be seen by any function...

2 ...but cannot be changed by any function unless
you use the “global” keyword

Why don’t we want to use global variables
very much?



How Python stores information

Objects are Python's abstraction for data.

All data in a Python program is represented
by objects or by relations between objects.

Every object has:
2 an identity (Where it is in memory. Unchangeable)
a2 atype (How to interpret memory. Unchangeable)

a2 avalue (What is in memory. May (not) be
changeable)



Parameter passing

Let’s take a look at what happens when we
try to pass mutable or immutable variables
into functions...



Reminder: Assignment

Assignment takes an object (the final object
after all operations) from the right-hand-side
and associates it with a variable on the
left-hand side.

When you assign one variable to another,
you share the association with the same
object.




myInt = 27
VOUFINL = mMyIiit

NameList Values

mylnt |

\

yourlnt -




Immutables

Object sharing, two variables associated with
the same object, is not a problem since the
object cannot be changed.

Any changes that occur generate a new
object.



myInt = 27

mylInt
yvourInt +5

yourlnt =

yourInt =
NamelList
myInt ~
yourlnt N

Values

>>> def scope test (foo):
print (id (foa) )
foo =+ 1
print (id (foa) )

>>> foo = 42

> id (foo)
1837198096

*>»» scope_test (foo)
183719809&
1837197440

>>>» id (foo)
1837198096

i




Mutability Changes an Object

If two variables associate with the same
object, they both reflect any change to that
object.




listl
list?2

[1,2,3]
listl

NamelList Values

list1

list2




list2 = listl
listl.append(27)

NamelList Values

list1

list2 =




Copying
If we copy, does that solve the problem?

myLst = [1, 2, 3]
newlLst = myLst[:]



listl = [1,2,3]
list2 = listl[:] #explicitly make a distinct copy
listl.append(27)

NamelList Values

list1

list2 ~




The Problem is What Gets Copied...

The elements of the list are copied, but
sometimes the elements of the list
themselves are references (or associations).

If the list has nested lists or uses other
associations, the association gets copied.
This is termed a shallow copy.




ligtZ = [5,6,%7]
NamelList Values
list1 b=

list2 ~




listl.append(list2)

NameList Values

list1

list? ~




listl = [1,2,3]
list2 = [5,6,7]
listl.append(list2)
list2[2] = 88

NamelList Values

list1 -

—

list2

[5, 6, 88]




Concluding notes...

Managing complexity
Principle of information hiding (encapsulation)

All variables must be local (in 99.99% of
cases)



