Dictionaries

More Data Structures

We have seen the string and list data
structures and their uses.

In particular, the dictionary is an important,
very useful part of Python as well as
generally useful to solve many problems.

What is a Dictionary?

In data structure terms, a dictionary is better
termed an associative array or associative list
or a map.

You can think if it as a list of pairs, where the
first element of the pair, the key, is used to
retrieve the second element, the value.

Thus we map a key to a value.

Key Value Pairs

The key acts as a “lookup” to find the
associated value.

Just like a dictionary, you look up a word by
its spelling to find the associated definition.

A dictionary can be searched to locate the
value associated with a key.

Python Dictionary

Use the { } marker to create a dictionary

Use the : marker to indicate key:value
pairs:
contacts= {‘bill’: '353-1234',

‘rich’: '269-1234’', ‘jane’: '352-1234'}
print (contacts)
{‘jane’: '352-1234’,

‘bill’: ‘353-1234’',

‘rich’: '369-1234'}

Contacts PhoneNumbers

‘bill
‘rich’ -
‘jane’ o

FIGURE 8.1 Phone contact list: names and phone numbers.

Keys and Values

Key must be immutable:

o strings, integers, tuples are fine
o lists are NOT

Value can be anything.

Collections but not a Sequence

Dictionaries are collections, but they are not
sequences like lists, strings or tuples:

o there is no order to the elements of a dictionary

o in fact, the order (for example, when printed)
might change as elements are added or deleted.

So how to access dictionary elements?

Access Dictionary Elements

Access requires [], but the key is the index!
myDict={}

a2 an empty dictionary
myDict [‘bi1ll’ =25

o added the pair ‘bill’:25
print (myDict[‘b1l1ll’])

2 prints 25

Dictionaries are Mutable

« Like lists, dictionaries are a mutable data
structure:

2 you can change the object via various operations,
such as index assignment

myDict = {‘bill’:3, ‘rich’:10}
print (myDict[‘bill’]) # prints 3
myDict ['bill’] = 100

print (myDict[‘bill’]) # prints 100

Again, Common Operators

Like others, dictionaries respond to these:
len (myDict)
o number of key:value pairs in the dictionary

element 1n myDict

a2 boolean, is element a key in the dictionary
for key 1n myDict:

o iterates through the keys of a dictionary

Lots of Methods

myDict.items () — all the key/value pairs
myDict.keys () — all the keys
myDict.values () — all the values

key 1n myDict

does the key exist in the dictionary

myDict.clear () —empty the dictionary
myDict.update (yourDict) — for each key in

yourDict, updates myDict with that key/value

pair

Dictionaries are Iterable

for key 1n myDict:
print (key)
2 prints all the keys
for key,value 1in myDict.items () :

print (key,value)
o prints all the key/value pairs

for value in myDict.values|() :

print (value)
a prints all the values

Doing something with this

Write a function called letterCount that:
o takes in a string as a parameter

o prints a table of the letters of the alphabet (in
alphabetical order) together with the number of
times each letter occurs.

o Case should be ignored.

