
Lists
(continued)

List of Lists

myLst = [‘a’, [1, 2, 3], ‘z’]

■ What is the second element (index 1) of that
list?

■ Another list:
myLst[1][0] # apply left to right
myLst[1] ⇒ [1, 2, 3]
[1, 2, 3][0] ⇒ 1

Iteration

for element in [1, [1, 2], ‘a’,True]:
 print element

■ Gives us

1
[1, 2]
‘a’
True

Change an Object’s Contents

■ Strings are immutable. Once created, the
object’s contents cannot be changed. New
objects can be created to reflect a change,
but the object itself cannot be changed:
myStr = ‘abc’
myStr[0] = ‘z’ # cannot do!
instead, make new str
newStr = myStr.replace(‘a’,’z’)

Lists are Mutable

■ Unlike strings, lists are mutable. You can
change the object’s contents!

myLst = [1, 2, 3]
myLst[0] = 127
print myLst ⇒ [127, 2, 3]

List Methods

■ Remember, a function is a small program
(such as len) that takes some arguments, the
stuff in the parenthesis, and returns some
value.

■ A method is called in a special way, the “dot
call”. It is called in the context of an object (or
a variable holding an object).

Again, Lists have Methods

myList = [‘a’,1,True]
myList.append(‘z’)

the object that
we are calling the
method with

the name of
the method

arguments to
the method

Some New Methods that Modify the
List
■ myList[0]=‘a’
❑ Index assignment

■ myList.append(x)
❑ Appends x to end of myList

■ myList.extend(C)
❑ Takes a collection (like another list) and add each

of the collection’s elements to the end of myList

Some New Methods that Modify the
List
■ myList.pop()
❑ Removes the element at the end of myList and

returns that element.
■ myList.insert(i,x)
❑ Inserts element x at position i into myList.

■ myList.remove(x)
❑ Removes element x from myList

Some New Methods that Modify the
List
■ myList.sort()
❑ Sorts myList. If sorting a list of lists, only the first

element in each list is considered in comparison
operations.

■ myList.reverse()
❑ Reverses the elements in myList

Some New Methods that do not
Modify the List
■ myList.index(x)
❑ Returns index value of element x in myList.

■ myList.count(x)
❑ Returns the number of times x appears in myList.

11

More about List Methods

■ Many methods do not return a value.
■ This is because lists are mutable so the

methods modify the list directly; there is no
need to return anything.

List Methods

❑ myList.append(x)
❑ myList.extend(C)
❑ myList.pop()
❑ myList.insert(i,x)

❑ myList.remove(x)
❑ myList.sort()
❑ myList.reverse()
❑ myList.index(x)
❑ myList.count(x)

13

Which methods modify the list??

Sorting

■ Only lists have a built-in sorting method. Thus
you often convert your data to a list if it needs
sorting:

myLst = list(‘xyzabc’)
myLst ⇒ [‘x’,’y’,’z’,’a’,’b’,’c’]
myLst.sort()
convert back to a string
sortStr = ‘’.join(myLst) ⇒ ‘abcxyz’

Sorted Function

■ The sorted function will break a sequence
into elements and sort the sequence, placing
the results in a list:

sortLst = sorted(‘hi mom’)
 ⇒ [‘ ‘,’h’,’i’,’m’,’m’,’o’]

Unusual Results

myLst = [4, 7, 1, 2]
myLst = myLst.sort()
myLst ⇒ None # what happened?

What happened was the sort operation changed
the order of the list in place (right side of
assignment). Then the sort method returned
None, which was assigned to the variable. The
list was lost and None is now the value of the
variable.

Anagram Example

■ Anagrams are words that contain the same
letters in a different order. For example:
‘iceman’ and ‘cinema.’

■ A strategy to identify anagrams is to take the
letters of a word, sort those letters, then
compare the sorted sequences.

■ Anagrams should have the same sequence.

Anagram Program Algorithm

1. Input 2 words to examine.
2. Sort the letters of each word into a new

string.
3. Compare the resulting sorted strings

18

List Lab

■ We played with and re-implemented many of
these list methods as our own functions in the
lab on lists.

■ Let’s take a look, once again.

19

