Functions

Functions

From mathematics we know that functions
perform some operation and return one
value.

They “encapsulate” the performance of some

particular operation, so it can be used by
others (for example, the len() function).

Why Have Them?

Abstraction of an operation

Reuse: once written, use again

Sharing: if tested, others can use

Security: if well tested, then secure for reuse
Simplify code: more readable

Support divide-and-conquer strategy

Mathematical Notation

Consider a function which converts
temperatures in Celsius to temperatures in
Fahrenheit:

o Formula: F=C*1.8+ 32.0

2o Functional notation: F = celsisus2Fahrenheit(C)
where

celsius2Fahrenheit(C) = C * 1.8 + 32.0

Two Parts to a Function

Definition — creates the function

Invocation — is the application of a function
within a program

A function must be defined before it is
Invoked

Function Definition

« Math: g(C)=C"1.8 + 32.0

= Python:
def celsius2Fahrenheit (C):
return C*1.8 + 32.0

Function Definition

Function name.
Must follow variable
naming rules.

Keyword A
indicating
function is
being defined.
/

-

List of parameters being
passed: in parentheses,
comma-separated.

functionName

(parameteri, parameter?2)

fstatemenﬂ

statement?2

\return valueToReturn

T

indicates the
value returned

Q‘inishes.

when the function

4 Return statement\ 4

N\

\

Function suite:
contains code to
perform some action.
Indented.

J

(D

Suite of the
function
follows the
colon.

A

Triple quoted string in function definition

def celsius2Fahrenheit (C):
""" Convert Celsius to Fahrenheit."""

return C*1.8 + 32.0

A triple quoted string just after the def is
called a docstring

docstring is documentation of the function’s

purpose, to be used by other tools to tell the
user what the function is used for.

‘ Python Invocation

« Math: F= celsiusZ2Fahrenheit(C)

= Python, the invocation is much the same
F = celsius2Fahrenheit(C)

Function Invocation Example

In your program (after the function definition),
we can invoke/call the function
fahrenheit2Celsius by:

originalTemp=90
convertedTemp = fahrenheit2Celsius(originalTemp)
print(originalTemp,”in Celsius is”,convertedTemp)

10

Return Statement

The return statement indicates the value that
IS returned by the function.

The statement is optional (the function can

return nothing). If no return, the function is
often called a procedure.

What exactly is return doing?

When python comes to a function inside your
code...

convertedTemp = fahrenheit2Celsius(originalTemp)

...It runs the function, then substitutes the
return value where the function stood

convertedTemp = 32.22222222222222

12

Returning None

None is a special value in Python that
represents nothing

o The first letter of None must be capitalized — it will
turn orange

Use it when you have nothing to return
o Like if one of the parameters was invalid

(Take a look at the fahrenheit2Celsius
function again...)

13

Multiple Returns in a Function

A function can have multiple return
statements.

Remember, the first return statement
executed ends the function.

#doing function stuff
return result

print("Hello!”) #This line will never happen

Multiple Returns in a Function

When you use if/elif/else statements, you
could place a return in every branch.

If result < 0:
return None
elif result == 1:
return 1
else:
return 42 #the answer to everything else

‘ Operation

1. Call copies argument C
to parameter celsius

2. Control transfers to
function
“celsius2Farenheit”

Operation (con’t)

3. Expression in
celsius2Farenheit 1s
evaluated

~

4. Value of
expression 1s
returned to the
invoker

main program
(. statement h

fahrenheit = cel2fahr(25)

stateme;\

s

function

%
def cel2fahr(celsius):

statement
N 4

N

val = celsius “ 1.8 + 32

return val

N

J

FIGURE 5.2 Function flow of control.

Procedures

Functions that have no return statements are
often called procedures.

Procedures are used to perform a task (print
output, store a file, etc.).

A return statement is not required.

Example

def printGameRules():
print("Please select from one of the following choices:")
print(" Enter s to show the score")
print(" Enter p to play")
print(" Enter e to exit")
print()

#run program
printGameRules()

20

Example: implement len

def length(S):
""Return the length of S."™"
count =0
forsin S:
count += 1
return count

Example: check membership in lowercase

import string
use string.lowercase, string of lowercase
a ‘abcdefghijkimnopqgrstuvwxyz’

check if each letter is a member (using the in
operator) of string.lowercase

Example: check membership in lowercase

import string

def letterCount(S):
"""Return the count of letters in S."™
count=0
forsin S:
iIf s.lower() in string.ascii_lowercase:
count += 1
return count

How to Write a Function

Does one thing. If it does too many things, it
should be broken down into multiple functions

Readable. If you write it, it should be
readable.

Reusable. If it does one thing well, then when
a similar situation (in another program)
occurs, use it there as well.

More on Functions

Complete. A function should work for all the
cases where it might be invoked.

Not too long. Kind of synonymous with “does
one thing”. Use it as a measure of doing too
much.

