
Functions

Functions

■ From mathematics we know that functions
perform some operation and return one
value.

■ They “encapsulate” the performance of some
particular operation, so it can be used by
others (for example, the len() function).

Why Have Them?

■ Abstraction of an operation
■ Reuse: once written, use again
■ Sharing: if tested, others can use
■ Security: if well tested, then secure for reuse
■ Simplify code: more readable
■ Support divide-and-conquer strategy

Mathematical Notation

■ Consider a function which converts
temperatures in Celsius to temperatures in
Fahrenheit:
❑ Formula: F = C * 1.8 + 32.0
❑ Functional notation: F = celsisus2Fahrenheit(C)

where
 celsius2Fahrenheit(C) = C * 1.8 + 32.0

Two Parts to a Function

■ Definition – creates the function
■ Invocation – is the application of a function

within a program

■ A function must be defined before it is
invoked

5

Function Definition

■ Math: g(C) = C*1.8 + 32.0

■ Python:
def celsius2Fahrenheit (C):
 return C*1.8 + 32.0

Function Definition

Triple quoted string in function definition

def celsius2Fahrenheit (C):
""" Convert Celsius to Fahrenheit."""
 return C*1.8 + 32.0

■ A triple quoted string just after the def is
called a docstring

■ docstring is documentation of the function’s
purpose, to be used by other tools to tell the
user what the function is used for.

Python Invocation

■ Math: F= celsius2Fahrenheit(C)

■ Python, the invocation is much the same
F = celsius2Fahrenheit(C)

Function Invocation Example

■ In your program (after the function definition),
we can invoke/call the function
fahrenheit2Celsius by:

originalTemp=90
convertedTemp = fahrenheit2Celsius(originalTemp)
print(originalTemp,”in Celsius is”,convertedTemp)

10

Return Statement

■ The return statement indicates the value that
is returned by the function.

■ The statement is optional (the function can
return nothing). If no return, the function is
often called a procedure.

What exactly is return doing?

■ When python comes to a function inside your
code…

convertedTemp = fahrenheit2Celsius(originalTemp)

■ …it runs the function, then substitutes the
return value where the function stood

convertedTemp = 32.22222222222222

12

Returning None

■ None is a special value in Python that
represents nothing
❑ The first letter of None must be capitalized – it will

turn orange
■ Use it when you have nothing to return
❑ Like if one of the parameters was invalid

■ (Take a look at the fahrenheit2Celsius
function again…)

13

Multiple Returns in a Function

■ A function can have multiple return
statements.

■ Remember, the first return statement
executed ends the function.

#doing function stuff
return result
print(“Hello!”) #This line will never happen

Multiple Returns in a Function

■ When you use if/elif/else statements, you
could place a return in every branch.

if result < 0:
return None

elif result == 1:
return 1

else:
return 42 #the answer to everything else

Operation

def celsius2Fahrenheit (celsius):
 return celsius*1.8 + 32.0

 F = celsius2Fahrenheit(C)
1. Call copies argument C
to parameter celsius

2. Control transfers to
function
“celsius2Farenheit”

Operation (con’t)

3. Expression in
celsius2Farenheit is
evaluated

4. Value of
expression is
returned to the
invoker

 F = celsius2Fahrenheit(C)

def celsius2Fahrenheit (celsius):
 return celsius*1.8 + 32.0

Procedures

■ Functions that have no return statements are
often called procedures.

■ Procedures are used to perform a task (print
output, store a file, etc.).

■ A return statement is not required.

Example

def printGameRules():
 print("Please select from one of the following choices:")
 print(" Enter s to show the score")
 print(" Enter p to play")
 print(" Enter e to exit")
 print()

#run program
printGameRules()

20

Example: implement len

def length(S):
 """Return the length of S."""
 count = 0
 for s in S:
 count += 1
 return count

Example: check membership in lowercase

■ import string
■ use string.lowercase, string of lowercase
❑ ‘abcdefghijklmnopqrstuvwxyz’

■ check if each letter is a member (using the in
operator) of string.lowercase

import string

def letterCount(S):
 """Return the count of letters in S."""
 count = 0
 for s in S:
 if s.lower() in string.ascii_lowercase:
 count += 1
 return count

Example: check membership in lowercase

How to Write a Function

■ Does one thing. If it does too many things, it
should be broken down into multiple functions

■ Readable. If you write it, it should be
readable.

■ Reusable. If it does one thing well, then when
a similar situation (in another program)
occurs, use it there as well.

More on Functions

■ Complete. A function should work for all the
cases where it might be invoked.

■ Not too long. Kind of synonymous with “does
one thing”. Use it as a measure of doing too
much.

