
Review of the base operators for
strings
■ myStr[3]
■ myStr[3:6]
■ Addition
■ Multiplication

■ in

Another Operator

■ Can check to see if a substring exists in the
string using the in operator.

■ Returns True or False
myStr = ‘aabbccdd’
‘a’ in myStr ⇒ True
‘abb’ in myStr ⇒ True
‘x’ in myStr ⇒ False

Functions

■ What is a function?

■ Name several we have worked with.

Functions, First Cut

■ A function is a program that performs some
operation(s). Its details are hidden
(encapsulated), only its interface provided.

■ A function takes some number of inputs
(arguments) and returns a value based on
the arguments and the function’s operation.

String Method

■ A method is a variation on a function
❑ like a function, it represents a program
❑ like a function, it has input arguments and an

output
■ Unlike a function, it is applied in the context

of a particular object.
■ This is indicated by the ‘dot notation’

invocation

Example

■ upper is the name of a method. It generates a
new string that has all upper case characters
of the string it was called with.

myStr = ‘Python Rules!’
myStr.upper() ⇒ ‘PYTHON RULES!’

More Dot Notation

■ Dot notation looks like this:
❑ object.method(…)

■ It means that the object in front of the dot is
calling a method that is associated with that
object’s type.

■ The methods that can be called are tied to
the type of the object calling it. Each type has
different methods.

Find

myStr = ‘hello’
myStr.find(‘l’) # find index of ‘l’ in myStr
 ⇒ 2

Note how the method ‘find’ operates on the string object
myStr and the two are associated by using the “dot”
notation: myStr.find(‘l’).
Terminology: the thing(s) in parenthesis, i.e. the ‘l’ in this
case, is called an argument.

Chaining Methods

Methods can be chained together.
■ Perform first operation, yielding an object
■ Use the yielded object for the next method
myStr = ‘Python Rules!’
myStr.upper() ⇒ ‘PYTHON RULES!’
myStr.upper().find(‘O’)
⇒ 4

Optional Arguments

Some methods have optional arguments:
■ if the user doesn’t provide one of these, a

default is assumed
■ find has a default second argument of 0,

where the search begins
aStr = ‘He had the bat’
aStr.find(‘t’) ⇒ 7 # 1st ‘t’,start @ 0
aStr.find(‘t’,8) ⇒ 13 # 2nd ‘t’

Nesting Methods

■ You can “nest” methods, that is, the result of
one method as an argument to another.

■ Remember that parenthetical expressions are
done “inside out”: do the inner parenthetical
expression first, then the next, using the
result as an argument.

aStr.find(‘t’, aStr.find(‘t’)+1)
■ Translation: find the second ‘t’.

How to Know?

■ You can use IDLE to find available methods
for any type. You enter a variable of the type,
followed by the ‘.’ (dot) and then a tab.

■ Remember, methods match with a type.
Different types have different methods.

■ If you type a method name, IDLE will remind
you of the needed and optional arguments.

More Methods
(Even more exist: http://docs.python.org/lib/string-methods.html)

■ s.capitalize
■ s.center(width)
■ s.count(sub,[,start [,end]])
■ s.ljust(width)
■ s.lower()
■ s.upper()
■ s.lstrip()
■ s.rfind(sub, [,start [,end]])
■ s.splitlines([keepends])
■ s.strip()
■ s.translate(table [, delchars])

String Comparisons, Single Char

■ There are multiple systems for representing
characters: ASCII, Unicode, windows-1252,
etc.

■ ASCII takes the English letters, numbers and
punctuation marks and associates them with
an integer number (0-128, or 256 for
extended set)

■ Single character comparisons are based on
that number

String Encodings

■ We can get the encodings from characters
using the ord function
❑ >>> ord(‘x’)
❑ Humans can look this number up in the ASCII

table
■ We can get the characters back from the

encoding using the chr function
❑ >>>chr(120)

18

Comparisons Within Sequence

■ It makes sense to compare within a
sequence (lower case, upper case, digits).
❑ ‘a’ < ‘b’ True
❑ ‘A’ < ‘B’ True
❑ ‘1’ < ‘9’ True

■ Can be weird outside of the sequence:
❑ ‘a’ < ‘A’ False
❑ ‘a’ < ‘0’ False

■ … because we are really comparing the ord()
encodings of each character

Whole Strings

■ Compare the first element of each string:
❑ if they are equal, move on to the next character in

each
❑ if they are not equal, the relationship between

those to characters are the relationship between
the string

❑ if one ends up being shorter (but equal), the
shorter is smaller

Examples

■ ‘a’ < ‘b’ True
■ ‘aaab’ < ‘aaac’
❑ First difference is at the last char. ‘b’<‘c’ so ‘aaab’

is less than ‘aaac’. True.
■ ‘aa’ < ‘aaz’
❑ The first string is the same but shorter. Thus it is

“smaller”. True.

Penny Math

■ Penny Math is a simple formula
❑ A (or a) costs 1 penny
❑ B (or b) costs 2 pennies
❑ …
❑ Z (or z) costs 26 pennies
❑ Everything else is FREE

■ Thus
❑ “Sergey” costs 19+5+18+7+5+25=79 cents

Our next task

■ Write a program called pennyMath that reads
in a String and prints the integer value
corresponding to the “cost” of the String.
❑ Version a: uses an “alphabet” string
❑ Version b: uses the ord() function instead

