
Introduction to Strings

■ A string is a sequence of characters.
■ A string is denoted by single, double, or triple

quotes
■ The exact sequence of characters is

maintained.

The Index

■ Because the elements of a string are a
sequence, we can associate each element
with an index, a location in the sequence:
❑ Non-negative values count up from the left,

beginning with index 0
❑ Negative values count down from the right,

starting with -1

Accessing an Element

■ A particular element of the string is accessed
by the index of the element surrounded by
square brackets []

helloStr = ‘Hello World’
print (helloStr[1]) => prints ‘e’
print (helloStr[-1]) => prints ‘d’
print (helloStr[11]) => ERROR

Slicing: the Rules

■ Slicing is the ability to select a subsequence of
the overall sequence

■ Uses the syntax [start : finish], where:
❑ start is the index of where we start the subsequence
❑ finish is the index of one after where we end the

subsequence
■ If either start or finish are not provided, it defaults

to the beginning of the sequence for start and
the end of the sequence for finish

Half Open Range for Slices

■ Slicing uses what is called a half-open range
■ The first index is included in the sequence
■ The last index is one after what is included

Basic String Operations
s = ‘spam’
■ + is concatenate
newStr = ‘spam’ + ‘-’ + ‘spam-’
print (newStr) ⇒ spam-spam-
■ * is repeat, the number is how many times
newStr * 3 ⇒
spam-spam-spam-spam-spam-spam-

Some Details

■ Both + and * on strings make a new string,
but does not modify the arguments.

■ Order of operation is important for
concatenation and repetition.

■ The types required are specific. For
concatenation you need two strings; for
repetition, a string and an integer.

What Does A + B Mean?

■ What operation does the above represent? It
depends on the types!
❑ two strings, concatenation
❑ two integers addition

■ The operator + is overloaded.
❑ the operation + performs depends on the types it

is working on

The type function

■ You can check the type of the value
associated with a variable using type

foo = ‘hello world’
type(foo) ⇒ yields <type ‘str’>
foo = 245
type(foo) ⇒ yields <type ‘int’>

Strings are Immutable

■ Strings are immutable, that is you cannot
change one once you make it:
❑ string = ‘spam’
❑ string[1] = ‘l’ ⇒ ERROR

■ However, you can use it to make another
string (copy it, slice it, etc).
❑ new_string = string[0] + ‘l’ + string[2:]
❑ string ⇒ ‘spam’
❑ new_string => ‘slam’

Iteration Through a Sequence

■ To date, we have seen the while loop as a
way to iterate over a suite (a group of python
statements)

■ We briefly touched on the for statement for
iteration, such as the elements of a list or a
string

for Statement

We use the for statement to process each
element of a list, one element at a time:

for item in sequence:
suite

What for means

string=‘abc’
for char in string:

print (char)
■ first time through, char=‘a’ (string[0])
■ second time through, char=‘b’ (string[1])
■ third time through, char=‘c’ (string[2])
■ no more items in sequence left, we quit

Power of the for Statement

■ Sequence iteration as provided by the for
statement is very powerful and very useful in
Python.

■ Allows you to write some very “short”
programs that do powerful things.

Built-in function: len

■ The len function takes as an argument a
string and returns an integer, the length of a
string.

myStr = ‘Hello World’
len(myStr) ⇒ 11 # space counts

Another version of the for loop

myStr=‘abc’
for index in range(len(myStr)):

print (myStr[index])
■ first time through, index=0 (myStr[0])
■ second time through, index=1 (myStr[1])
■ third time through, index=2(myStr[2])
■ no more numbers left, so we quit

