Introduction to Strings

A string is a sequence of characters.

A string is denoted by single, double, or triple
quotes

The exact sequence of characters is
maintained.



The Index

Because the elements of a string are a

seguence, we can associate each element

with an index, a location in the sequence:

a2 Non-negative values count up from the left,
beginning with index O

2 Negative values count down from the right,
starting with -1



characters | H | e I I 0 W o r I d

ndkex | O 1 2 3 4 5 6 7 8 9 10

2 1




Accessing an Element

A particular element of the string is accessed
by the index of the element surrounded by
square brackets [ ]

helloStr = ‘Hello World’

print (helloStr[1]) => prints ‘€’

print (helloStr[-1]) => prints ‘d’
=> ERROR




Slicing: the Rules

Slicing is the ability to select a subsequence of
the overall sequence

Uses the syntax [start : finish], where:

o start is the index of where we start the subsequence

a finish is the index of one after where we end the
subsequence

If either start or finish are not provided, it defaults
to the beginning of the sequence for start and
the end of the sequence for finish




Half Open Range for Slices

2

icing uses what is called a half-open range
ne first index is included in the sequence
The last index is one after what is included

_l




helloString[6:10]

characters | H | e | | 0 Wl o r | d

index | 0 1 2 3 4 5 6 7 8 9 10

T T

first last



helloString[6:]

helloString[:5]

characters | H | e | | 0 Y d
index | O 1 2 3 4 5 6 10
first
characters | H | e | | 0 W d
index | O 1 2 3 4 5 6 10




helloString[3:-2]

characters | H | e |

index | O 1 Z2

10

T

last




‘Basic String Operations

S = ‘spam’

= +Is concatenate

newStr = ‘spam’ + -’ + ‘spam-’

orint (newStr) = spam-spam-—

= " is repeat, the number is how many times
newStr * 3 =
sSpam-spam-spam-spam-spam-spam-




Some Details

Both + and * on strings make a new string,
but does not modify the arguments.

Order of operation is important for
concatenation and repetition.

The types required are specific. For
concatenation you need two strings; for
repetition, a string and an integer.



What Does A + B Mean?

What operation does the above represent? It
depends on the types!

o two strings, concatenation
2 two integers addition

The operator + is overloaded.

o the operation + performs depends on the types it
IS working on



The type function

You can check the type of the value
associated with a variable using type

foo = ‘hello world’

type(foo) = yields <type ‘str>
foo = 245

type(foo) = yields <type ‘int'’>



Strings are Immutable

Strings are immutable, that is you cannot
change one once you make it:

a string = ‘spam’

a string[1] = = ERROR

However, you can use it to make another
string (copy it, slice it, etc).

a hew_string = string[0] + ‘I' + string[2]
a string = ‘spam’
2 new_string => ‘slam’



Iteration Through a Sequence

To date, we have seen the while loop as a
way to iterate over a suite (a group of python
statements)

We Dbriefly touched on the for statement for
iteration, such as the elements of a list or a
string



for Statement

We use the for statement to process each
element of a list, one element at a time:

for 1tem 1n sequence:

sulte



‘ What £for means

string="abc’
for char in string:
print (char)
« first time through, char="a’ (string[0])
« second time through, char="b’ (string[1])
« third time through, char='c’ (string[2])
=« N0 more items in sequence left, we quit




Power of the for Statement

Sequence iteration as provided by the for
statement is very powerful and very useful in
Python.

Allows you to write some very “short”
programs that do powerful things.



'Built-in function: len

= The len function takes as an argument a
string and returns an integer, the length of a
string.

myStr = ‘Hello World’

len(myStr) = 11 # space counts




Another version of the for loop

myStr="abc’
for index in range(len(myStr)):
print (myStr[index])
first time through, index=0 (myStr[0])
second time through, index=1 (myStr[1])
third time through, index=2(myStr[2])
no more numbers left, so we quit



